
Cards
Release 1.2

Dotpay Development Team

September 23, 2020

Contents

1 Service address 2

2 Resources 2
2.1 Basic parameters in the register order method input. 2

2.1.1 Table 1. Basic parameters of the register order method input 3
2.2 Parameters for 3-D Secure v2 support on the register_order method input 4

2.2.1 Table 2. Parameters in the register_order method input for 3DS v2 sup-
port describing the payer’s browser . 4

2.2.2 Table 3. Handling of shipping and payer data on the input of regis-
ter_order method for 3DS v2 support . 6

2.2.3 Values used for indicator field replacement for selected fields: 8
2.2.4 Sample requests for 3DS v2 . 8

3 One-Click payment 11
3.1 One Click assumptions . 11
3.2 First One Click payment process . 12

3.2.1 Direct registration . 12
3.2.2 Registration with payment . 13

3.3 First One click payment description . 13
3.4 Consecutive One Click payment process . 15
3.5 Consecutive One Click payment description . 15

4 Recurring payments 16
4.1 Recurring payments - Assumptions . 16
4.2 First Recurring payment process . 16
4.3 Consecutive Recurring payment process . 17
4.4 Consecutive Recurring payment process description 17

5 3-D Secure handling (redirect) 18

6 Additional information 19
6.1 Credit card unregistration . 19

7 Test environment 19

1

HTTP Routing Table 21

Document describes credit card payment integration using direct communication with Dotpay
via REST API.

This documentation is available online at: https://www.dotpay.pl/developer/doc/credit-
cards/

1 Service address

The service is available on the following addresses:

• for test environment
https://ssl.dotpay.pl/test_payment/payment_api/v1/

• for production environment
https://ssl.dotpay.pl/t2/payment_api/v1/

2 Resources

POST /register_order/
This method allows to create a payment operation in Dotpay system on any payment
channel. Examples below show payment registration on credit cards channel.

Exemplary request:

curl --user login:passwd \
-H'Accept: application/json; indent=4' \
-H'content-type: application/json' \
-XPOST \
-d @request.json \
https://ssl.dotpay.pl/test_payment/payment_api/v1/register_order/

Status Codes

• 201 Created – created

• 400 Bad Request – error while processing the request

2.1 Basic parameters in the register order method input.

The structure of the data transferred as input to the register order method is described in the
table below.

2

https://www.dotpay.pl/developer/doc/credit-cards/en/
https://www.dotpay.pl/developer/doc/credit-cards/en/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

2.1.1 Table 1. Basic parameters of the register order method input

Element Type Comments
order object mandatory; order data
order.amount decimal(10,2) mandatory; order amount
order.currency string mandatory; three letter code (ISO 4217) of order

currency
order.description string mandatory; order description
order.control string optional; order id on seller’s side
seller object mandatory; seller account data
seller.account_id integer mandatory; Dotpay account number
seller.url string mandatory; the address to which the payer may

be redirected after making the payment
seller.urlc string optional; the address where notifications about

operation status will be sent
payer object mandatory; payer’s data
payer.first_name string mandatory; payer’s first name
payer.last_name string mandatory; payer’s last name
payer.email string wymagane; payer’s email address
payer.address object optional (unless the configuration of a given

channel requires these data); address detail of
the payer

payer.address.street string mandatory if payer.address is given; street
payer.address.
building_number

string mandatory if payer.address is given; building
number

payer.address.flat_number string mandatory if payer.address is given; flat num-
ber

payer.address.postcode string mandatory if payer.address is given; post code
payer.address.city string mandatory if payer.address is given; city
payer.address.country string mandatory if payer.address is given; three-

letter code (ISO 3166-1 alpha-3) of a country
payment_method object mandatory; payment method data
payment_method.channel_id integer mandatory; payment channel number, 248 for

credit cards. Full list of payment channels is
available in basic Implementation documenta-
tion

payment_method.credit_card object credit card data
payment_method.credit_card.
number

string credit card number

payment_method.credit_card.
expiration_date

object credit card expiration date

payment_method.credit_card.
expiration_date.year

string
(YYYY)

credit card expiration date year

payment_method.credit_card.
expiration_date.month

string (MM) credit card expiration month

payment_method.credit_card.
security_code

string CVV2/CVC2 code

payment_method.credit_card.
store

boolean store credit card data in Dotpay agreement

payment_method.credit_card.
customer_id

string (4 -
1024 char-
acters)

unique buyer ID generated and stored by seller’s
system, required for future payments

payment_method.credit_card.
id

string Buyer’s registered card ID

continues on next page

3

http://en.wikipedia.org/wiki/ISO_4217
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://www.dotpay.pl/developer/doc/api_payment/en/index.html#zalacznik-i-kanaly-platnosci
https://www.dotpay.pl/developer/doc/api_payment/en/index.html#zalacznik-i-kanaly-platnosci

Table 1 – continued from previous page
Element Type Comments
payment_method.credit_card.
operation_type

string operation type:
e_commerce – first and consecutive
payment in one-click model (default
value), recurring_init – first transac-
tion allowing later use of recurring
payments, recurring – recurring pay-
ment (customer doesn’t have to be
present in order to charge the regis-
tered card),

payment_method.credit_card.
security_code_required

string allows to control whether CVV/CVV2 security
code is required during payment, applies only
to consecutive e_commerce. Available values:

yes (default) no

payment_method.credit_card.
threeds

string allows to control whether 3-D Secure authenti-
cation code is required during payment. Applies
only to e_commerce model for enrolled cards.
Available values:

yes (default) no

request_context.ip string mandatory; payer’s ip address
request_context.language string two-letter code of a language (ISO 639-1) in

which the payment is made;
yes (default)

2.2 Parameters for 3-D Secure v2 support on the register_order method input

Sending more data than just “required” for a card payment may be of great importance in the
final decision of the card issuer to accept the transaction itself.

Note: Based on the additional information sent or the lack thereof, the card issuer may
decide on a possible need for additional transaction verification (challenge) or to process
transactions without the 3DS code. This, in turn, may speed up and facilitate the payment
process itself for the payer and, consequently, have a positive effect on the conversion of card
payments.

Therefore, we recommend that you send as much additional data as possible when initiating
the payment.

Input data of register_order method for 3DS v2 support are described by the following tables.

2.2.1 Table 2. Parameters in the register_order method input for 3DS v2 support describing the
payer’s browser

4

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes

Element Type Comments
request_context.accept string recommended;

Accept header from client browser headers
description: HTTP ACCEPT

Example:
request_context.accept = text/html, appli-
cation/xhtml+xml, application/xml;q=0.9, */

request_context.referer string recommended;
Adres strony z której użytkownik został
przekierowany (nagłówek HTTP)

description: HTTP referer
Example:
request_context.referer =
http://www.example.org/referring_page

request_context.useragent string zalecane; Nagłówek user-agent z nagłówków
przeglądarki klienta

description: HTTP User-Agent
Example:
request_context.useragent = Mozilla/5.0
(X11; Linux i686) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/84.0.4147.105
Safari/537.36

request_context.browser.
javaenabled

boolean recommended; The ability to execute Java code
in the client’s browser

description: navigator.javaEnabled();
Example:
request_context.browser.javaenabled = 1

request_context.browser.
javascriptenabled

boolean recommended; The ability to execute JavaScript
code in the client’s browser
Example:
request_context.browser.
javascriptenabled = 1

request_context.browser.
language

string required where request_context.browser.
javascriptenabled = 1
Browser language in the IETF BCP 47 standard

descriptiondescription: naviga-
tor.language.slice(0,2)

Example:
request_context.browser.language = pl

request_context.browser.
screencolordepth

int required where request_context.browser.
javascriptenabled = 1
Głębia koloru dla wyświetlania koloru w przeglą-
darce klienta, pozyskana z screen.colorDepth.

description: screen.colorDepth
permissible values:
1,4,8,15,16,24,32,48

Example:
request_context.browser.
screencolordepth = 24

request_context.browser.
screenheight

int required where request_context.browser.
javascriptenabled = 1
Screen height in pixels obtained from
screen.height.

description: screen.height
Example:
request_context.browser.screenheight =
1080

continues on next page

5

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept
https://en.wikipedia.org/wiki/HTTP_referer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorPlugins/javaEnabled
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorLanguage/language
https://developer.mozilla.org/en-US/docs/Web/API/NavigatorLanguage/language
https://developer.mozilla.org/en-US/docs/Web/API/Screen/colorDepth
https://developer.mozilla.org/en-US/docs/Web/API/Screen/height

Table 2 – continued from previous page
Element Type Comments
request_context.browser.
screenwidth

int required where request_context.browser.
javascriptenabled = 1
Screen width in pixels obtained from
screen.width.

description: screen.width
Example:
request_context.browser.screenwidth =
1920

request_context.browser.
timezone

int required where request_context.browser.
javascriptenabled = 1
Time zone expressed as the difference in min-
utes between GMT and local time

description: new
Date().getTimezoneOffset()
Example:

request_context.browser.timezone = -120

2.2.2 Table 3. Handling of shipping and payer data on the input of register_order method for
3DS v2 support

FIELD NAME TYPE DESCRIPTION
payment_method.
customer.is_logged_in

boolean Whether payer has register an account before placing an or-
der

payment_method.
customer.
registered_since

string Payer’s registration date on the seller’s website, format
YYYY-MM-DD or YYYY-MM-DD hh:mm:ss
Optional field, if it is sent, the parameter: payment_method.
customer.order_count should also be sent. Instead of
specifying a specific date in the format YYYY-MM-DD,
you can use the parameter: payment_method.customer.
registered_since_indicator instead.

payment_method.
customer.
registered_since_indicator

string (in-
dicator)

Payer’s registration date on the seller’s website, indicator for
the payment_method.customer.registered_since field
Optional, if it’s sent, payment_method.customer.
order_count is also required

payment_method.
customer.account_update

string Date of last change of paying account on the seller’s website,
format YYYY-MM-DD
Instead of specifying a specific date in the format YYYY-
MM-DD, you can use the parameter: payment_method.
customer.account_update_indicator instead.

payment_method.
customer.
account_update_indicator

string (in-
dicator)

Date of last change of paying account on the seller’s web-
site, indicator for the field payment_method.customer.
account_update

payment_method.
customer.
password_change

string Date of last password change for the paying account on the
seller’s website, format YYYY-MM-DD
Instead of specifying a specific date in the format YYYY-
MM-DD, you can use the parameter: payment_method.
customer.password_change_indicator instead.

payment_method.
customer.
password_change_indicator

string (in-
dicator)

Date of last change of password for the paying account on
the seller’s website, indicator for the field payment_method.
customer.password_change

continues on next page

6

https://developer.mozilla.org/en-US/docs/Web/API/Screen/width
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTimezoneOffset
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/getTimezoneOffset

Table 3 – continued from previous page
FIELD NAME TYPE DESCRIPTION
payment_method.
customer.
shipping_address_since

string Date from when the payer’s delivery address is used, format
YYYY-MM-DD
Instead of specifying a specific date in the format YYYY-
MM-DD, you can use the parameter: payment_method.
customer.shipping_address_since_indicator instead.

payment_method.
customer.
shipping_address_since_indicator

string (in-
dicator)

Date from which the payer’s delivery address is used,
the indicator for the field payment_method.customer.
shipping_address_since

payment_method.
customer.order_count

int Number of orders placed by the paying seller on the seller’s
website from the date of registration
Optional, if it’s sent, payment_method.customer.
registered_since is also required

payment_method.
customer.
order_count_day

int The number of orders placed by the paying seller on the
same day

payment_method.
customer.
order_count_year

int Number of orders placed by the paying seller in the same
year

payment_method.
customer.fraud_activity

boolean Has the store ever seen suspicious activity on this buyer’s
account

payment_method.
customer.order

- Order

payment_method.
customer.order.
total_amount

string The value of the entire order

payment_method.
customer.order.id

string Order ID in the seller’s system. Corresponds to the ID num-
ber of the entire order in the store database

payment_method.
customer.order.
delivery_type

string Delivery method
Available values:

• COURIER - courier
• POCZTA_POLSKA - Poczta Polska
• PICKUP_POINT - pickup point like UPS Access point,

DHL Parcel Shop
• PACZKOMAT - parcel locker
• PACZKA_W_RUCHU - paczka w ruchu
• PICKUP_SHOP - pickup in shop (click&collect)

payment_method.
customer.order.
delivery_address

- Delivery address If the package is delivered to a point /
parcel locker / etc, such address and name should be
given, not the data of the actual recipient.

payment_method.
customer.order.
delivery_address.city

string Delivery address: city

payment_method.
customer.order.
delivery_address.street

string Delivery address: street

payment_method.
customer.order.
delivery_address.
building_number

string Delivery address: building number

payment_method.
customer.order.
delivery_address.
flat_number

string Delivery address: flat number

continues on next page

7

Table 3 – continued from previous page
FIELD NAME TYPE DESCRIPTION
payment_method.
customer.order.
delivery_address.
postcode

string Delivery address: zip code

payment_method.
customer.order.
delivery_address.
country

string Delivery address: (ISO 3166-1 alpha2) or (ISO 3166-1 al-
pha3) country code

payment_method.
customer.order.
delivery_address.name

string Name of recipient / collection point.
Examples:
payment_method.customer.order.
delivery_address.name = Point PP:6252652
payment_method.customer.order.
delivery_address.name = PPP:6252652

payment_method.
customer.order.
delivery_address.phone

string Payer phone number

payment_method.
customer.order.
delivery_address.
is_verified

bool Delivery address: Whether the delivery address is verified

Note: If the store does not want to provide the correct date, it is possible to use an indicator
field of replacement type for selected parameters.

2.2.3 Values used for indicator field replacement for selected fields:

VALUE DESCRIPTION
01 The payer’s account does not exist on the seller’s website
02 Date of the transaction just ordered
03 Date not older than 30 days ago
04 Date in the range 30 - 60 days ago
05 Date older than 60 days ago

2.2.4 Sample requests for 3DS v2

Exemplary use of parameters described above:

Listing 1: Example 1: using the minimum number of pa-
rameters for the 3DS v2 process (json format)

1 {
2 "order": {
3 "amount": "34.00",
4 "currency": "PLN",
5 "description": "Payment for order no 3342",
6 "control": "xcftg-32432-5325hdf"
7 },
8 "seller": {
9 "account_id": "123456",

(continues on next page)

8

https://en.wikipedia.org/wiki/ISO_3166-1_alfa-2
https://en.wikipedia.org/wiki/ISO_3166-1_alfa-3
https://en.wikipedia.org/wiki/ISO_3166-1_alfa-3

(continued from previous page)

10 "url": "https://www.example.com"
11 },
12 "payer": {
13 "first_name": "John",
14 "last_name": "Doe",
15 "email": "johndoemail@example.com",
16 "phone": "123456789",
17 "address": {
18 "city": "Warszawa",
19 "street": "Krucza",
20 "building_number": "1a",
21 "flat_number": "4",
22 "postcode": "00-950",
23 "country": "PL"
24 }
25 },
26 "payment_method": {
27 "channel_id": "248",
28 "credit_card": {
29 "number": "4929532027887670",
30 "expiration_date": {
31 "year": "2022",
32 "month": "01"
33 },
34 "security_code": "670",
35 "store": "1",
36 "customer_id": "f9c6a4-25473-765gh"
37 }
38 },
39 "request_context": {
40 "ip": "127.0.0.1",
41 "language": "pl",
42 "accept": "text/html, application/xhtml+xml, application/xml;q=0.9, */",
43 "referer": "http://www.example.org/referring_page",
44 "useragent": "Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.36 (KHTML,

→˓like Gecko) Chrome/84.0.4147.105 Safari/537.36",
45 "browser": {
46 "javaenabled": 1,
47 "javascriptenabled": 1,
48 "language": "en",
49 "screencolordepth": 24,
50 "screenheight": 1024,
51 "screenwidth": 1920,
52 "timezone": -120
53 }
54 }
55

56 }

Listing 2: Example 2: using additional parameters for the
3DS v2 process - one-click payment with a previously saved
card (json format)

1 {
2 "order": {
3 "amount": "56.20",
4 "currency": "PLN",
5 "description": "Payment for order no 6542",
6 "control": "3426hs5fskdbg6g"
7 },

(continues on next page)

9

(continued from previous page)

8 "seller": {
9 "account_id": "123456",

10 "url": "https://www.example.com"
11 },
12 "payment_method": {
13 "channel_id": "248",
14 "credit_card": {
15 "id":

→˓"85c14e6e5608cbc69e19acec41730d59052fbcd306364d96c9cdaafacb7a0833d0fa14280ab9a2b2381fad381f65f076a0b607fodc463ecf5e514c6bh6b3f694
→˓",

16 "customer_id": "f9c6a4-25473-765gh"
17 },
18

19 "customer": {
20

21 "is_logged_in": 1,
22 "registered_since": "2019-11-21",
23 "order_count": 23,
24

25 "order": {
26 "id": "54356723",
27 "delivery_type": "PICKUP_POINT",
28 "delivery_address": {
29 "name": "Point PP:6252652",
30 "phone": "+48987654321",
31 "street": "Zielona",
32 "building_number": "32",
33 "postcode": "61-321",
34 "city": "Konin",
35 "country": "PL",
36 "is_verified": 1
37 }
38 },
39 "payer": {
40 "first_name": "Wieslaw",
41 "last_name": "Nowak",
42 "email": "paysdfds@example.com",
43 "phone": "+48443456766"
44 }
45 }
46

47 },
48 "payer": {
49 "first_name": "Adam",
50 "last_name": "Kowal",
51 "email": "payeremail@example.com",
52 "phone": "+48123456789",
53 "address": {
54 "city": "Konin",
55 "street": "Prosta",
56 "building_number": "34",
57 "flat_number": "7",
58 "postcode": "62-500",
59 "country": "PL"
60 }
61 },
62 "request_context": {
63 "ip": "192.188.3.221",
64 "language": "pl",
65 "accept": "text/html, application/xhtml+xml, application/xml;q=0.9, */",
66 "referer": "http://www.example.org/referring_page",

(continues on next page)

10

(continued from previous page)

67 "useragent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
→˓(KHTML, like Gecko) Chrome/51.0.2704.79 Safari/537.36 Edge/14.14393",

68 "browser": {
69 "javaenabled": 1,
70 "javascriptenabled": 1,
71 "language": "en",
72 "screencolordepth": 24,
73 "screenheight": 1024,
74 "screenwidth": 1920,
75 "timezone": -120
76 }
77 }
78

79 }

3 One-Click payment

3.1 One Click assumptions

This section describes exemplary credit card (direct and indirect) registration process in One
Click model, and consecutive payments where shop passes registered card id.

Shop can send request only when customer has authenticated in shop’s system (has to be
logged in).

Caution: Keep in mind cards are registered in context of given shop (id) group in Dotpay
and won’t work for other accounts.

11

3.2 First One Click payment process

Below are examples of first payment initialization in each model:

3.2.1 Direct registration

POST /cards/

{
"seller": {

"account_id": "123456",
"url": "https://www.example.com"

},
"payer": {

"first_name": "John",
"last_name": "Doe",
"email": "johndoemail@example.com"

},
"credit_card": {

"number": "4929532027887670",
"expiration_date": {

"year": "2020",
"month": "01"

},
"security_code": "670",
"customer_id": "f9c6a4-25473"

},
"request_context": {

"ip": "127.0.0.1",
"language": "pl"

}
}

12

3.2.2 Registration with payment

POST /register_order/

{
"order": {

"amount": "1.00",
"currency": "PLN",
"description": "test",
"control": "test"

},
"seller": {

"account_id": "123456",
"url": "https://www.example.com"

},
"payer": {

"first_name": "John",
"last_name": "Doe",
"email": "johndoemail@example.com"

},
"payment_method": {

"channel_id": "248",
"credit_card": {

"number": "4929532027887670",
"expiration_date": {

"year": "2020",
"month": "01"

},
"security_code": "670",
"store": "1",
"customer_id": "f9c6a4-25473"

},
"request_context": {

"ip": "127.0.0.1",
"language": "pl"

}
}

}

3.3 First One click payment description

Note: Processing payment card data by seller’s system requires – according to Payment
Card Industry Data Security Standard (PCI DSS) – additional conditions to be met. In order
to receive more information about necessary formalities please contact Sales Department
(handlowy@dotpay.pl).

As an alternative card can also be registered using redirection to Dotpay where customer
can safely enter card data. This process has been described in technical manual of payment
integration

Description below applies to registration with payment. In direct registration process is iden-
tical but instead of charging the customer only a temporary funds blockade be issued, can-
celled when registration process is completed. Operation type will also change from payment
to credit_card_registration.

1. Customer chooses payment with credit card, enters it’s data and click pay.

2. Shop initializes payment process in Dotpay passing order details such as card data and
parameters required for its registration:

13

mailto:handlowy@dotpay.pl
https://www.dotpay.pl/developer/doc/api_payment/en/index.html#one-click-i-platnosci-cykliczne
https://www.dotpay.pl/developer/doc/api_payment/en/index.html#one-click-i-platnosci-cykliczne

{
"order": {

"amount": "1.00",
"currency": "PLN",
"description": "test",
"control": "test"

},
"seller": {

"account_id": "123456",
"url": "https://www.example.com"

},
"payer": {

"first_name": "John",
"last_name": "Doe",
"email": "johndoemail@example.com"

},
"payment_method": {

"channel_id": "248",
"credit_card": {

"number": "4929532027887670",
"expiration_date": {

"year": "2020",
"month": "01"

},
"security_code": "670",
"store": "1",
"customer_id": "f9c6a4-25473"

},
"request_context": {

"ip": "127.0.0.1",
"language": "pl"

}
}

}

3. Dotpay checks if card is enrolled for 3-D Secure program.

Attention: Steps 4-8 are optional if card is enrolled for 3-D Secure program (description
in Rozdziale 6).

4. If it is,

5. Dotpay returns operation details including redirect section and
redirect_simplified_url address.

6. Shop is responsible for redirecting customer to the issuer directly using redirect sec-
tion or indirectly via Dotpay using redirect_simplified_url.

7. Customer goes to the issuer site and authorizes with 3-D Secure.

8. Issuer redirects customer to Dotpay

9. Card is charged and registered

10. Customer is redirected to the shop.

11. After receiving urlc notification with operation status

12. shop informs customer about order status.

14

3.4 Consecutive One Click payment process

3.5 Consecutive One Click payment description

1. Customer chooses payment method, picks registered card and clicks pay.

2. Shop initializes payment process sending order data including registered card id and
customer_id

{
"order": {

"amount": "1.00",
"currency": "PLN",
"description": "test",
"control": "test"

},
"seller": {

"account_id": "123456",
"url": "https://www.example.com"

},
"payer": {

"first_name": "John",
"last_name": "Doe",
"email": "johndoemail@example.com"

},
"payment_method": {

"channel_id": "248",
"credit_card": {

"id":
→˓"85c14e6e5608cbc69e19acec41730d59052fbcd306364d96c9cdaafacb7a0833d0fa14280ab9a2b2381fad381f65f076a0b607fodc463ecf5e514c6bh6b3f694
→˓",

"customer_id": "f9c6a4-25473"
}

},

(continues on next page)

15

(continued from previous page)

"request_context": {
"ip": "127.0.0.1",
"language": "pl"

}
}

3. Dotpay checks if card is enrolled for 3-D Secure program.

Attention: Steps 4-8 are optional if card is enrolled for 3-D Secure program.

4. If it is,

5. Dotpay returns operation details including redirect section and
redirect_simplified_url address.

6. Shop is responsible for redirecting customer to the issuer directly using redirect sec-
tion or indirectly via Dotpay using redirect_simplified_url.

7. Customer goes to the issuer site and authorizes with 3-D Secure.

8. Issuer redirects customer to Dotpay

9. Card is charged.

10. Customer is redirected to the shop.

11. After receiving urlc notification with operation status

12. shop informs customer about order status.

4 Recurring payments

4.1 Recurring payments - Assumptions

This section describes exemplary credit card (direct and indirect) registration process in
Recurring model, and consecutive payments where shop initializes payments without cus-
tomer’s presence using previously registered card id.

Caution: Keep in mind cards are registered in context of given shop (id) group in Dotpay
and won’t work for other accounts.

4.2 First Recurring payment process

Process is the same as for first One click payment. Only (depending on the account configura-
tion) additional parameter payment_method.credit_card.operation_type = recurring_init
has to be sent.

Caution: Successful registration does not guarantee consecutive payment attempts will
be completed. Customer can unregister card anytime or transaction might fail because of
inadequate balance, daily limits, negative authorization and so on.

16

4.3 Consecutive Recurring payment process

4.4 Consecutive Recurring payment process description

1. Shop initializes payment process sending order data including registered card id and
customer_id

{
"order": {

"amount": "1.00",
"currency": "PLN",
"description": "test",
"control": "test"

},
"seller": {

"account_id": "123456",
"url": "https://www.example.com"

},
"payer": {

"first_name": "John",
"last_name": "Doe",
"email": "johndoemail@example.com"

},
"payment_method": {

"channel_id": "248",
"credit_card": {

"id":
→˓"85c14e6e5608cbc69e19acec41730d59052fbcd306364d96c9cdaafacb7a0833d0fa14280ab9a2b2381fad381f65f076a0b607fodc463ecf5e514c6bh6b3f694
→˓",

"customer_id": "f9c6a4-25473"
}

},
"request_context": {

"ip": "127.0.0.1",
"language": "pl"

}
}

2. Card is charged

3. and Dotpay send urlc notification with transaction status.

Caution: In case consecutive payment attempts fail, another one should be made not
earlier than next day and not more often than daily for not longer than 31 days. Meanwhile

17

shop should take necessary steps to contact the customer to find the cause of the issue.

5 3-D Secure handling (redirect)

If payment processing requires redirection to bank / issuer, in response Dotpay will return
additional object redirect according to the description below.

Element Type Comments
redirect object complete data required for redirec-

tion to the bank / issuer
redirect.url string url where customer should be redi-

rected
redirect.method enumeration

(post, get)
redirection http method

redirect.data object dictionary (list of <key, values>
pairs) of parameters, which need to
be sent with redirection to the bank
/ issuer

redirect.encoding string encoding for request.data dictio-
nary values

Attention: Redirect data contains signature and need to be sent intact including proper
encoding. If data integrity is compromised, payment will be rejected by the bank / issuer.

Note: As an alternative it is possible to redirect (HTTP 302) to the address in
redirect_simplified_url. In this case redirection to the bank / provider will be handled
by Dotpay.

18

Listing 3: Exemplary response including redirect.url
and redirect_simplified_url:

{

"redirect":{
"url":"https://ssl.dotpay.pl/test_payment/channel_specific/pv/payment_

→˓authentication/M1234-56789/
→˓k5bd2c03b5d995boe1862cf775cf8cec114fe36aea928272b0a2b4883a92b14d/",

"data":{},
"method":"GET",
"encoding":"utf-8"

},
"redirect_simplified_url":"https://ssl.dotpay.pl/test_payment/channel_

→˓specific/pv/payment_authentication/M1234-56789/
→˓k5bd2c03b5d995boe1862cf775cf8cec114fe36aea928272b0a2b4883a92b14d/"
}

6 Additional information

6.1 Credit card unregistration

Unregistration can be done in few ways:

1) Client might use link given in payment confirmation emails.

2) Deregistration request might be sent to Dotpay from seller’s system via API.

Request should be sent using DELETE method to the
https://ssl.dotpay.pl/t2/payment_api/v1/cards/{credit_card_id}/, where {credit_card_id}
is card ID which should be removed.

Exemplary request:

DELETE /cards/(string: credit_card_id)/

Response:

HTTP/1.1 204 No Content

HTTP status codes meaning:

CODE DESCRIPTION / MEANING
204 No Content Deleted
404 Not Found Card not found
400 Bad Request Request processing error

7 Test environment

Table below contains few exemplary cards which might be used for that purpose. Expiration
date is anything from current date to December 2020.

TYPE NUMBER CVV2 / CVC2 3DS
Visa 4916 9715 6289 1025 025 No
Visa 4929 5320 2788 7670 670 Yes
MasterCard 5498 5400 7907 4343 343 No

continues on next page

19

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

Table 7 – continued from previous page
TYPE NUMBER CVV2 / CVC2 3DS
MasterCard 5344 6642 8071 1026 026 Yes

20

HTTP Routing Table

/cards
POST /cards/, 12
DELETE /cards/(string:credit_card_id)/,

19

/register_order
POST /register_order/, 2

21

	Service address
	Resources
	Basic parameters in the register order method input.
	Table 1. Basic parameters of the register order method input

	Parameters for 3-D Secure v2 support on the register_order method input
	Table 2. Parameters in the register_order method input for 3DS v2 support describing the payer’s browser
	Table 3. Handling of shipping and payer data on the input of register_order method for 3DS v2 support
	Values used for indicator field replacement for selected fields:
	Sample requests for 3DS v2

	One-Click payment
	One Click assumptions
	First One Click payment process
	Direct registration
	Registration with payment

	First One click payment description
	Consecutive One Click payment process
	Consecutive One Click payment description

	Recurring payments
	Recurring payments - Assumptions
	First Recurring payment process
	Consecutive Recurring payment process
	Consecutive Recurring payment process description

	3-D Secure handling (redirect)
	Additional information
	Credit card unregistration

	Test environment
	HTTP Routing Table

